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Abstract. Several hard exclusive scattering processes admit a description in terms of generalized parton dis-
tributions and perturbative hard-scattering kernels. Both the physical amplitude and the hard-scattering
kernels fulfill dispersion relations. We give a detailed investigation of their consistency at all orders in per-
turbation theory. The results shed light on the information about generalized parton distributions that
can be extracted from the real and imaginary parts of exclusive amplitudes. They also provide a practical
consistency check for models of these distributions in which Lorentz invariance is not exactly satisfied.
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1 Introduction

Dispersion relations play an important role in the descrip-
tion of exclusive processes, relating the real and imaginary
parts of the amplitude. They are for instance required to
derive the operator product expansion for Compton scat-
tering in Bjorken kinematics. In this context they have re-
cently been used to establish a representation of the deeply
virtual Compton amplitude which allows for the inclusion
of two-loop corrections in a practicable way [1]. In a differ-
ent context, dispersion relations have been employed in [2]
to simplify the calculation of the hard-scattering kernels
for exclusive quarkonium production at next-to-leading
order.
For hard exclusive processes that can be calculated

using collinear factorization, one may write down disper-
sion relations both for the physical process and for the
parton-level subprocess. The question of consistency be-
tween both representations turns out to be non-trivial and
has already been raised in the seminal work [3] giving
the proof of factorization for meson production. Important
progress has recently been reported in [4, 5], where it was
shown that this consistency is ensured by Lorentz invari-
ance in the form of the polynomiality property for general-
ized parton distributions (GPDs). The studies in [4, 5] were
carried out using the Born-level approximation of the hard-
scattering subprocess. In particular, they showed that to
this accuracy not only the imaginary but also the real part
of the process amplitude can be represented in terms of
GPDs F (x, ξ, t) along the line x= ξ in the x–ξ plane. This
constitutes both a simplification and a limitation for ex-
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tracting information on GPDs from hard exclusive ampli-
tudes at leading-order accuracy. It is natural to ask how the
situation changes when including radiative corrections to
the hard-scattering kernel.
In the present work we therefore investigate dispersion

representations for hard exclusive processes to all orders in
perturbation theory, generalizing the leading-order results
derived in [4, 5]. In addition we consider in detail the dis-
tributions for polarized quarks and for gluons, for which
special issues arise. Our paper is organized as follows. In
the next section we recall a number of results which will
be needed in our subsequent work. Section 3 gives a de-
tailed analysis of dispersion representations in the unpolar-
ized quark sector. The specifics of other distributions are
discussed in Sect. 4. As an application of our results, we
investigate in Sect. 5 the model for GPDs proposed by Mc-
Dermott, Freund and Strikman [6], where polynomiality
is not satisfied. In Sect. 6 we summarize our findings and
draw conclusions.

2 Some reminders

Let us begin by recalling some well-known properties of
generalized parton distributions and of dispersion rela-
tions, which we will need in the subsequent sections.

2.1 Lorentz invariance and crossing properties

An essential property of generalized parton distributions is
the polynomiality of their Mellin moments. This property
directly follows from the Lorentz covariance of the opera-
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tor matrix elements which are parameterized by GPDs [7].
With the conventional definitions (given e.g. in [8]) we have
for quarks

∫ 1
−1
dx xn−1Hq(x, ξ, t) =

n−1∑
k=0
even

(2ξ)k Aqn,k(t)+ (2ξ)
nCqn(t) ,

∫ 1
−1
dx xn−1Eq(x, ξ, t) =

n−1∑
k=0
even

(2ξ)k Bqn,k(t)− (2ξ)
nCqn(t) ,

∫ 1
−1
dx xn−1H̃q(x, ξ, t) =

n−1∑
k=0
even

(2ξ)k Ãqn,k(t) ,

∫ 1
−1
dx xn−1Ẽq(x, ξ, t) =

n−1∑
k=0
even

(2ξ)k B̃qn,k(t) (1)

with n≥ 1, whereCqn is non-zero only for even n. For gluons
we have
∫ 1
0

dx xn−2Hg(x, ξ, t) =
n−2∑
k=0
even

(2ξ)k Agn,k(t)+ (2ξ)
nCgn(t) ,

∫ 1
0

dx xn−2Eg(x, ξ, t) =
n−2∑
k=0
even

(2ξ)k Bgn,k(t)− (2ξ)
nCgn(t) ,

∫ 1
0

dx xn−2H̃g(x, ξ, t) =
n−1∑
k=0
even

(2ξ)k Ãgn,k(t) ,

∫ 1
0

dx xn−2Ẽg(x, ξ, t) =
n−1∑
k=0
even

(2ξ)k B̃gn,k(t) , (2)

where n ≥ 2 is even for Hg and Eg and n ≥ 3 is odd
for H̃g and Ẽg. Since Hg, Eg are even and H̃g, Ẽg are
odd functions of x, we can restrict the integrals in (2) to
the range 0 < x < 1. The convention for the moment in-
dex n is such that quark and gluon form factors with the
same n mix under evolution, i.e. Aqn,k with A

g
n,k, B

q
n,k

with Bgn,k etc. The different powers of x in the integrals
(1) and (2) reflect the different forward limits of the dis-
tributions, e.g. Hq(x, 0, 0) = q(x) and Hg(x, 0, 0) = xg(x)
for x > 0.
An important ingredient in the subsequent discussion

will be the high-energy behavior of scattering amplitudes.
According to the principles of Regge theory, this behavior
is connected with the quantum numbers exchanged in the
t-channel. Let us briefly recall how the relevant quantum
numbers can be determined in the context of generalized
parton distributions [9]. For negative or zero t the form fac-
torsAqn,k(t) etc. parameterize the matrix elements of quark
or gluon operators between single-proton states. Their
analytic continuation to positive t gives the correspond-
ing matrix elements between the vacuum and a proton–
antiproton state. Decomposing those matrix elements into
contributions with definite angular momentum, one can
associate the form factors with the relevant quantum num-
bers in the t-channel. The relevant decomposition for the

GPDs of the proton is given in Chapt. 4.2 of [8], and we list
the resulting JPC quantum numbers of the t-channel ex-
change in Table 1. From this one can readily establish the
exchange quantum numbers for the generalized parton dis-
tributions, which are given in Table 2. In particular we see
that for positive charge conjugation there are distributions
allowing for spin-zero exchange. This corresponds to en-
ergy independent contributions in scattering amplitudes,
which play a prominent role in dispersion relations as we
will see.
A way to ensure polynomiality of the moments (1) is the

double distribution representation [9, 10]

Hq(x, ξ, t) =Hqf (x, ξ, t)+sign(ξ)D
q
(x
ξ
, t
)
,

Eq(x, ξ, t) =Eqk(x, ξ, t)− sign(ξ)D
q
(x
ξ
, t
)

(3)

Table 1. Quantum numbers of t-channel exchanges for the
form factors in (1) and (2) as explained in the text. The entries
with positive charge conjugation parity C = +1 refer to both
quarks gluons, and those with C =−1 only to quarks

form factor n JPC

An,k+
t

4m2
Bn,k even 0++, 2++, . . . , (n−k)++

Cn even 0++

An,k+Bn,k even 2++, . . . , (n−k)++

˜An,k+
t

4m2
˜Bn,k odd 0−+, 2−+, . . . , (n−k−1)−+

˜An,k odd 1++, 3++, . . . , (n−k)++

An,k+
t

4m2
Bn,k odd 1−−, 3−−, . . . , (n−k)−−

An,k+Bn,k odd 1−−, 3−−, . . . , (n−k)−−

˜An,k+
t

4m2
˜Bn,k even 1+−, 3+−, . . . , (n−k−1)+−

˜An,k even 2−−, . . . , (n−k)−−

Table 2. Quantum numbers of t-channel exchanges for com-
binations of generalized quark distributions of definite charge
conjugation parity. The entries with C =+1 also hold for the
corresponding gluon distributions

distribution JPC

Hq(x, ξ, t)−Hq(−x, ξ, t) 0++, 2++, . . .

Eq(x, ξ, t)−Eq(−x, ξ, t) 0++, 2++, . . .

˜Hq(x, ξ, t)+ ˜Hq(−x, ξ, t) 1++, 3++, . . .

˜Eq(x, ξ, t)+ ˜Eq(−x, ξ, t) 0−+, 1++, 2−+, 3++, . . .

Hq(x, ξ, t)+Hq(−x, ξ, t) 1−−, 3−−, . . .

Eq(x, ξ, t)+Eq(−x, ξ, t) 1−−, 3−−, . . .

˜Hq(x, ξ, t)− ˜Hq(−x, ξ, t) 2−−, 4−−, . . .

˜Eq(x, ξ, t)− ˜Eq(−x, ξ, t) 1+−, 2−−, 3+−, 4−−, . . .
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with

Hqf (x, ξ, t) =

∫
dβ dα δ(x−αξ−β)fq(β, α, t) ,

Eqk(x, ξ, t) =

∫
dβ dα δ(x−αξ−β) kq(β, α, t) , (4)

where fq and kq are commonly referred to as double dis-
tributions and Dq as the D term. The support region
of fq(β, α, t) and kq(β, α, t) is the rhombus |α|+ |β| ≤ 1,
whereas Dq(α, t) has support for |α| < 1 and is odd in α.
More general representations have been discussed in the
literature [9, 11, 12] but will not be needed in the following.
For gluons one has

Hg(x, ξ, t) =Hgf (x, ξ, t)+ |ξ|D
g
(x
ξ
, t
)
,

Eg(x, ξ, t) =Egk(x, ξ, t)−|ξ|D
g
(x
ξ
, t
)

(5)

with

Hgf (x, ξ, t) =

∫
dβ dα δ(x−αξ−β)βfg(β, α, t) ,

Egk(x, ξ, t) =

∫
dβ dα δ(x−αξ−β)βkg(β, α, t) . (6)

The support properties of fg, kg and Dg are as for their
quark counterparts, and Dg(α, t) is even in α. One readily
finds that the Mellin moments of the D term are related to
the form factors Cn(t) as

∫ 1
−1
dα αn−1Dq(α, t) = 2nCqn(t) ,

∫ 1
0

dα αn−2Dg(α, t) = 2nCgn(t) . (7)

The polarized quark distributions H̃q and Ẽq have dou-
ble distribution representations analogous to (3) and (4)
but without a D term, since the highest power appearing
in their Mellin moments (1) is ξn−1 instead of ξn. We will
discuss the case of H̃g and Ẽg in Sect. 4.3.

2.2 Dispersion relations

The exclusive processes we consider in this work are
deeply virtual Compton scattering (DVCS) and light me-
son production,

γ∗(q)+p(p)→ γ(q′)+p(p′) ,

γ∗(q)+p(p)→M(q′)+p(p′) , (8)

where four-momenta are indicated in parentheses. Our
arguments can be extended to the production of heavy
mesons like the J/Ψ , but we shall not dwell on this here.
Since the processes in (8) involve particles with non-zero
spin, the appropriate quantities for discussing dispersion
relations are invariant amplitudes, which have simple ana-
lyticity and crossing properties. An explicit decomposition

for Compton scattering can be found in [13], where these
invariant amplitudes are called Compton form factors.
To describe the kinematics of (8) we use the Mandel-

stam variables s= (p+q)2, t= (p−p′)2, u= (p−q′)2. Con-
sider now an invariant amplitude F [σ](ν, t) with definite
signature σ under s↔ u crossing, so that

F [σ](−ν, t) = σF [σ](ν, t) , (9)

where 2ν = s−u. We will work in kinematics where t ≤ 0
and external photons are on shell or have spacelike virtu-
ality, so that the imaginary part of the amplitude is due to
the s-channel discontinuity for ν > 0 and to the u-channel
discontinuity for ν < 0. The fixed-t dispersion relation with
no subtraction then reads

ReF [σ](ν, t)

=
1

π

∫ ∞
νth

dν′ ImF [σ](ν′, t)

[
1

ν′−ν
+σ

1

ν′+ν

]
,

(10)

where νth is the value of ν at threshold. Here and in the fol-
lowing Cauchy’s principal value prescription is understood
for the singularities at ν′ =±ν of the dispersion integral.
For the dispersion relation (10) to be valid, the integral of
F [σ](ν′, t) times the term in square brackets must vanish
when taken over an infinite semicircle in the ν′ plane. This
requires

F [+](ν, t) →
|ν|→∞

0 , ν−1F [−](ν, t) →
|ν|→∞

0 . (11)

A dispersion relation with one subtraction,

ReF [σ](ν, t)−ReF [σ](ν0, t)

=
1

π

∫ ∞
νth

dν′ ImF [σ](ν′, t)

×

[
1

ν′−ν
+σ

1

ν′+ν
−

1

ν′−ν0
−σ

1

ν′+ν0

]
, (12)

is valid if

ν−2F [+](ν, t) →
|ν|→∞

0 , (13)

whereas for σ = −1 we have the same condition (11) as
with no subtraction.
We will study dispersion relations for the processes (8)

in the Bjorken limit of large −q2 at fixed q2/ν and t. It is
then useful to trade ν for the scaling variable

ξ =−
(q+ q′)2

2(p+p′) · (q+ q′)
=−

q2

s−u
=−
q2

2ν
, (14)

where we have neglected q′
2
and t compared with q2 in

the numerator. The factorization theorems established
in [3, 14] state that in the Bjorken limit certain invariant
amplitudes become dominant and can be written as the
convolution of partonic hard-scattering kernels with gen-
eralized quark or gluon distributions (and the light-cone
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distribution amplitude of the produced meson).1 To estab-
lish dispersion relations we will need information on the
high-energy behavior of these amplitudes. Empirically the
small-x behavior of the usual quark and gluon distribu-
tions, obtained from fits mainly to inclusive deep inelastic
scattering data, is well described by a power law. With
currently used models for generalized parton distributions,
based either on double distributions or on Gegenbauer mo-
ments, one finds a corresponding power-law behavior for
the invariant amplitudes of DVCS [1, 13, 15, 16] and of me-
son production [17]. Whether this correspondence may
be model independent is not known; see the discussion in
Sect. 3.2 of [16]. We will take it as a guideline in the fol-
lowing, bearing in mind that deviations between the power
laws of parton densities and exclusive amplitudes (or de-
viations from a strict power behavior in the asymptotic
limit) do not invalidate our dispersion relations as long as
the invariant amplitudes do not grow faster than the criti-
cal power of energy specified in (11) and (13).

3 Unpolarized quark distributions

In this section we discuss in detail the contribution of un-
polarized quark distributions to the leading invariant am-
plitudes for DVCS or meson production. Here and in the
following we decompose all amplitudes into terms of defi-
nite signature σ. According to the factorization theoremwe
can write

Fq[σ](ξ, t, q2) =

∫ 1
−1
dx
1

ξ
Cq[σ]

(x
ξ
, q2
)
F q(x, ξ, t) (15)

with F q =Hq, Eq. For simplicity we have omitted the de-
pendence on the renormalization and factorization scales;
in the following will also omit the arguments q2 in the hard-
scattering kernel2 and t in the generalized parton distri-
butions. The hard-scattering kernel satisfies the symmetry
relation

Cq[σ]
(
−
x

ξ

)
=−σCq[σ]

(x
ξ

)
, (16)

so that the factorization formula can be written as

Fq[σ](ξ) =

∫ 1
0

dx
1

ξ
Cq[σ]

(x
ξ

)
F q[σ](x, ξ) (17)

in terms of the combinations

F q[σ](x, ξ) = F q(x, ξ)−σF q(−x, ξ) (18)

1 Up to terms suppressed by inverse powers of
√

−q2, the
leading invariant amplitudes for DVCS correspond to trans-
verse photon polarization and those for meson production to
longitudinal photon and meson polarization in the collision
c.m.
2 We refer to Cq[σ] as hard-scattering kernel for ease of lan-
guage, keeping in mind that for meson production it is more
precisely the convolution of a hard-scattering kernel with the
meson distribution amplitude.

for quark exchange of definite signature. We remark that
F q[+] corresponds to positive and F q[−] to negative charge
conjugation parity in the t-channel. With the relation

F q[σ](x,−ξ) = F q[σ](x, ξ) (19)

from time reversal invariance one finds that Fq[σ](−ξ) =
σFq[σ](ξ) as required. In the Bjorken limit the Mandelstam
variables for the hard-scattering subprocess are given by

ŝ= xs+ 12 (1−x)q
2 , û= xu+ 12 (1−x)q

2 , (20)

so that one has

x

ξ
=−
ŝ− û

q2
. (21)

To leading order (LO) in αs the kernel reads

Cq[σ](ω)∝
1

1−ω− iε
−σ

1

1+ω− iε
,

ImCq[σ](ω)∝ π
[
δ(ω−1)−σδ(ω+1)

]
(22)

for both DVCS and meson production, where we have
omitted any global factors which are irrelevant for our
discussion of fixed-t dispersion relations here. At higher
orders in αs one finds branch cuts in the ŝ- and û-channels
for ω > 1 and ω <−1, respectively. For the dispersion rela-
tions to be discussed shortly, we need to know the behavior
of the kernels for |ω| →∞. The NLO kernels for DVCS can
be found in [18], and those for meson production in [19, 20].
For negative signature, one finds Cq[−](ω)∼ ω−1 up to log-
arithms for both DVCS and meson production. For pos-
itive signature, the NLO corrections give Cq[+](ω) ∼ ω−1

for DVCS, and Cq[+](ω)∼ ω0 for meson production, again
up to logarithms. The power behavior as ω0 is due to two-
gluon exchange in the t-channel. For DVCS such graphs
only start at NNLO, so that at this level one will also have
Cq[+](ω) ∼ ω0. This change in energy behavior between
NLO and NNLO is the same as in the hard-scattering ker-
nels for inclusive deep inelastic scattering [21], obtained
from γ∗p→ γ∗p in forward kinematics via the optical theo-
rem. In fact, the kernels for DVCS and for deep inelastic
scattering are intimately related; see e.g. [1, 18].

3.1 Dispersion relations

The invariant amplitude satisfies a fixed-t dispersion rela-
tion. Using 1/ξ = −2ν/q2 as energy variable and making
one subtraction, one has

ReFq[σ](ξ)−ReFq[σ](ξ0)

=
1

π

∫ ∞
1

dω′ ImFq[σ](1/ω′)

×

[
1

ω′−1/ξ
+σ

1

ω′+1/ξ
−{ξ→ ξ0}

]
, (23)

where ξ0 denotes the subtraction point and the Cauchy
principal value prescription is understood at ω′ =±1/ξ. As
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is appropriate in the Bjorken limit, we have neglected t and
the hadron masses when determining the lower limit of the
ω′ integration.
According to the discussion at the end of the previ-

ous section, the validity of a dispersion relation with one
subtraction requires that ξ2Fq[+](ξ) and ξFq[−](ξ) van-
ish for ξ → 0, whereas an unsubtracted dispersion rela-
tion would require Fq[+](ξ)→ 0 in the same limit. Given
the phenomenological observed small-x behavior of valence
and sea quark distributions, we expect a small-ξ behavior
Hq[σ](ξ)∼ ξ−α with 1<α< 2 for σ=+1 and 0<α< 1 for
σ =−1. For σ =+1 we hence do require one subtraction
in the dispersion relation. We have also taken one subtrac-
tion for σ =−1 although this would not be necessary. We
shall see that our final results for negative signature would
be the same with no subtraction. According to Table 2 the
distributions Hq[σ] and Eq[σ] involve the same quantum
numbers in the t-channel, and we therefore expect that the
high-energy behavior ofHq[σ] and Eq[σ] is similar.
Inserting the factorization formula (17) into (23) and

using that Cq[σ](ω) has a vanishing imaginary part for
|ω|< 1, one obtains

ReFq[σ](ξ)−ReFq[σ](ξ0)

=
1

π

∫ ∞
1

dω′
∫ 1
1/ω′
dx ω′ ImCq[σ](xω′)F q[σ](x, 1/ω′)

×

[
1

ω′−1/ξ
+σ

1

ω′+1/ξ
−{ξ→ ξ0}

]

=
1

π

∫ ∞
1

dω

∫ 1
0

dx
ω

x2
ImCq[σ](ω)F q[σ]

(
x,
x

ω

)

×

[
1

ω/x−1/ξ
+σ

1

ω/x+1/ξ
−{ξ→ ξ0}

]
, (24)

where in the second step we have changed the order
of integration,

∫∞
1 dω

′
∫ 1
1/ω′ dx =

∫ 1
0 dx

∫∞
1/x dω

′, substi-

tuted ω = xω′, and changed the order of integration again.
Straightforward algebra finally gives

ReFq[σ](ξ) = ReFq[σ](ξ0)

+
1

π

∫ ∞
1

dω ImCq[σ](ω)

∫ 1
0

dx F q[σ]
(
x,
x

ω

)

×

[
1

ωξ−x
−σ

1

ωξ+x
−

1

ωξ0−x
+σ

1

ωξ0+x

]
.

(25)

Note that ImCq[σ](ω) contains terms proportional to
δ(ω− 1), as is already seen in the leading-order expres-
sion (22). These terms are understood to be included in
the integration over ω in (25). A remark is in order on
the behavior of the integrand for x→ 0. Let us first con-
sider the case F q[σ] =Hq[σ]. It is natural to expect that
Hq[σ](x, x/ω) has a singular behavior for x→ 0 that is
similar to the forward distribution q(x)+σq̄(x). With the
small-x behavior of quark densities obtained in typical
phenomenological analyses, one then has an integrable sin-
gularity of Hq[−](x, x/ω), whereas the corresponding sin-

gularity of Hq[+](x, x/ω) is stronger than x−1 but weaker
than x−2. For σ =+1 the expression in square brackets in
(25) is however proportional to x, so that the integrand
is again sufficiently well behaved at x= 0. A similar dis-
cussion can be given for Eq[σ](x, x/ω), assuming that its
small-x behavior is similar to the one ofHq[σ](x, x/ω).
We now discuss the dispersion relation for the hard-

scattering kernel itself. Notice that according to (16) the
kernel Cq[σ] has opposite symmetry behavior under cross-
ing than the corresponding process amplitude Fq[σ], so
that Cq[+] satisfies a negative-signature dispersion relation
and Cq[−] a positive-signature one. With the large-ω be-
havior discussed after (22) we hence need no subtraction in
either case and can write

ReCq[σ]
(x
ξ

)
=
1

π

∫ ∞
1

dω ImCq[σ](ω)

×

[
1

ω−x/ξ
−σ

1

ω+x/ξ

]
, (26)

where again the Cauchy principal value prescription is im-
plied at ω =±x/ξ. Insertion into the factorization formula
(17) yields

ReFq[σ](ξ) =
1

π

∫ ∞
1

dω ImCq[σ](ω)

×

∫ 1
0

dx F q[σ](x, ξ)

[
1

ωξ−x
−σ

1

ωξ+x

]
.

(27)

This can in particular be used to evaluate the subtraction
constant ReFq[σ](ξ0) in (25), which then reads

ReFq[σ](ξ) =
1

π

∫ ∞
1

dω ImCq[σ](ω)

×

∫ 1
0

dx

{
F q[σ]

(
x,
x

ω

) [ 1

ωξ−x
−σ

1

ωξ+x

]

+

[
F q[σ](x, ξ0)−F

q[σ]
(
x,
x

ω

)]

×

[
1

ωξ0−x
−σ

1

ωξ0+x

]}
. (28)

Notice that the terms in the third and fourth line give the
amplitude in the limit ξ→∞, which corresponds to the
point s= u= q2/2 in the unphysical region. The negative-
signature amplitude must vanish at this point for symme-
try reasons. Comparison of the ξ0 independent terms in
(24) and (25) shows that an unsubtracted dispersion rela-
tion for Fq[−](ξ) has indeed the same form as (28) without
the terms in the third and fourth line. The same is however
not true for Fq[+](ξ).
Consistency of the representations (27) and (28) implies

1

π

∫ ∞
1

dω ImCq[σ](ω)

∫ 1
−1
dx

[
F q(x, ξ)−F q

(
x,
x

ω

)]

×

[
1

ωξ−x
−σ

1

ωξ+x

]
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=
1

π

∫ ∞
1

dω ImCq[σ](ω)

∫ 1
−1
dx

[
F q(x, ξ0)−F

q
(
x,
x

ω

)]

×

[
1

ωξ0−x
−σ

1

ωξ0+x

]
, (29)

i.e. the l.h.s. must be independent of ξ. In (29) we have
restored the integration over negative x and traded F q[σ]

for F q, making use of the symmetry relation (19). The
Cauchy principal value prescription should be applied at
x= 0 if σ =−1, so that a possible non-integrable singular-
ity of the σ =+1 part of F q(x, x/ω) = 1

2

[
F q[+](x, x/ω)+

F q[−](x, x/ω)
]
cancels under the integral because it is anti-

symmetric in x. At this point we can make two comments:

1. To leading order in αs the dispersion representation
(25) involves only distributions F q[σ](x, ξ) at the point
x = ξ because of the simple form (22) of the hard-
scattering kernel, as was found in [4, 5]. At higher orders
in αs it involves however the distributions in the full
DGLAP region |x| ≥ ξ. Knowledge of F q[σ](x, x) for all
x is hence only sufficient to reconstruct the amplitude
(up to a subtraction term) at leading order in the strong
coupling. The reconstruction is however possible to any
order in αs without direct knowledge of the distribu-
tions in the ERBL region |x|< ξ.

2. The consistency of dispersion relations for the pro-
cess amplitude and for the hard-scattering kernel was
already discussed in the context of the factorization
proof in [3]. Translated into our notation, the analog
of our (25) in that work was mistakenly written with
F q[σ](x, ξ) instead of F q[σ](x, x/ω) and without a sub-
traction term, so that consistency with (27) was trivial.
The correct consistency relation (29) follows from the
polynomiality property of GPDs, as we now show.

3.2 Consequences for generalized parton distributions

Clearly (29) is satisfied if

Iq[σ](ω) =

∫ 1
−1
dx

[
F q(x, ξ)−F q

(
x,
x

ω

)]

×

[
1

ωξ−x
−σ

1

ωξ+x

]
(30)

is independent of ξ for all ω ≥ 1. To show that this is the
case, we Taylor expand F q(x, x/ω) in its second argument,

Iq[σ](ω)

=
1

ω

∞∑
n=1

1

n!

( ∂
∂η

)n ∫ 1
−1
dx
(x
ω
− ξ
)n−1

F q(x, η)
∣∣∣
η=ξ

+σ
1

ω

∞∑
n=1

1

n!

( ∂
∂η

)n ∫ 1
−1
dx
(x
ω
+ ξ
)n−1

F q(x, η)
∣∣∣
η=−ξ

,

(31)

where we have interchanged the order of differentiation and
integration. For definiteness we consider first the case F q =

Hq. Using the polynomiality property (1) and the fact that
Cqn is only non-zero for even n, we find

Iq[+](ω) = 2
∞∑
n=2
even

(
2

ω

)n
Cqn , I

q[−](ω) = 0 , (32)

which is independent of ξ as required. We recall that we
have suppressed the dependence on t in the distributions
F q, as well as in the form factorsCqn. Alternatively one may
use the double distribution representation in (3) and (4).
One readily finds that the double distribution part of Iq[σ]

is zero, with
∫ 1
−1
dx

[
Hqf (x, ξ)−H

q
f

(
x,
x

ω

)] 1

ωξ−x

=

∫ 1
−1
dx

∫
dβ dα fq(β, α)

×
[
δ(x−αξ−β)− δ

(
x[1− αω ]−β

)] 1

ωξ−x

=

∫
dβ dα fq(β, α)

[
1

ωξ−αξ−β
−

1/(1− α
ω
)

ωξ−β/(1− α
ω
)

]

= 0 (33)

and an analogous relation for the term with 1/(ωξ+x).
The only non-zero contribution to Iq[σ] comes hence from
the D term

Iq[+](ω) = sign(ξ)

∫ 1
−1
dx Dq

(x
ξ

)[ 1

ωξ−x
−

1

ωξ+x

]

= 2

∫ 1
−1
dα
Dq(α)

ω−α
,

Iq[−](ω) = 0 , (34)

where we have used the support and symmetry properties
of Dq(α) stated after (4). Expanding 1/(ω−α) in a geo-
metric series and using (7) one readily sees that (32) and
(34) are equivalent. For the case F q = Eq the discussion
proceeds in full analogy, with the opposite sign of Cqn in
(32) and ofDq in (34). As a corollary one finds the integral
relations∫ 1
−1
dx

[
Hq(x, ξ)−Hq

(
x,
x

ω

)] [ 1

ωξ−x
−

1

ωξ+x

]

=−

∫ 1
−1
dx

[
Eq(x, ξ)−Eq

(
x,
x

ω

)] [ 1

ωξ−x
−

1

ωξ+x

]

= 2

∫ 1
−1
dx
Dq(x)

ω−x
(35)

and∫ 1
−1
dx

[
Hq(x, ξ)−Hq

(
x,
x

ω

)] [ 1

ωξ−x
+

1

ωξ+x

]

=

∫ 1
−1
dx

[
Eq(x, ξ)−Eq

(
x,
x

ω

)] [ 1

ωξ−x
+

1

ωξ+x

]

= 0 . (36)
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They reflect the polynomiality properties of the distri-
butions and in this sense are non-trivial consequences of
Lorentz invariance. Using them to evaluate the ξ0 depen-
dent terms in (28) gives

ReHq[+](ξ) =
1

π

∫ ∞
1

dω ImCq[+](ω)

×

∫ 1
−1
dx

{
Hq
(
x,
x

ω

) [ 1

ωξ−x
−

1

ωξ+x

]
+
2Dq(x)

ω−x

}
,

Re Eq[+](ξ) =
1

π

∫ ∞
1

dω ImCq[+](ω)

×

∫ 1
−1
dx

{
Eq
(
x,
x

ω

)[ 1

ωξ−x
−

1

ωξ+x

]
−
2Dq(x)

ω−x

}
,

(37)

and

ReHq[−](ξ) =
1

π

∫ ∞
1

dω ImCq[−](ω)

×

∫ 1
−1
dx Hq

(
x,
x

ω

)[ 1

ωξ−x
+

1

ωξ+x

]

(38)

with an analogous representation for Eq[−](ξ). We note
that according to our comment after (28) one has

lim
ξ→∞

Fq[σ](ξ) =
1

π

∫ ∞
1

dω ImCq[σ](ω)Iq[σ](ω) . (39)

For σ = −1 this is zero, and in fact we could have im-
mediately obtained (38) from an unsubtracted dispersion
relation, where the ξ0 dependent terms in (28) are absent
as remarked earlier. For σ = +1, the subtraction term in
the dispersion relation (25) is fixed by the D term if one
takes ξ0→∞. In the leading-order approximation for the
hard-scattering kernel this was already observed in [4, 5],
and for the general case in [1]. According to Table 1 the D
term parameterizes a part of Hq and Eq which is associ-
ated with spin-zero exchange in the t-channel.3 From (17)
one readily finds that its contribution to the invariant am-
plitudes Hq[+](ξ) and Eq[+](ξ) is energy independent and
purely real.

3.3 The Compton amplitude
with both photons off shell

So far we have discussed deeply virtual Compton scatter-
ing, γ∗p→ γp, where the photon in the final state is on
shell, and we obtained the integral relations (35) and (36)
for the generalized parton distributions. It is natural to ask
whether any further relations can be derived by consider-
ing dispersion relations for the Compton amplitude

γ∗(q)+p(p)→ γ∗(q′)+p(p′) (40)

3 Note that this is not restricted to the exchange of spin-zero
resonances. In the context of chiral dynamics [22, 23] the dom-
inant exchange is in fact given by two pions in an S-wave.

with both photons off shell. For q2 < 0 and q′
2
> 0 this

process can be studied experimentally, with the timelike
final-state photon decaying into a lepton pair [24–26]. The
analyticity properties of the amplitude are however more
complicated in this case, because there are simultaneous
branch cuts in s and q′

2
or in u and q′

2
. Instead we con-

sider the case where both q2 and q′
2
are spacelike, so that

the only singularities are in s and u, as in the previous sub-
sections. We have two scaling variables

ξ =−
(q+ q′)2

2(p+p′) · (q+ q′)
=−
q2+ q′

2

s−u
,

ϑ=
q2− q′2

q2+ q′2
, (41)

where in the second expression for ξ we have neglected t
compared with q2+ q′

2
. For ϑ = 1 we recover the case of

DVCS, whereas with two spacelike photon virtualities we
have −1< ϑ< 1. In the Bjorken limit of large −q2 at fixed
ξ, ϑ and t one has a factorization formula for the invariant
amplitudes:

Fq[σ](ξ, ϑ, t, q2) =

∫ 1
−1
dx
1

ξ
Cq[σ]

(x
ξ
, ϑ, q2

)
F q(x, ϑξ, t) ,

(42)

with F q =Hq, Eq as before. We will again omit the argu-
ments q2 and t in the following. The Mandelstam variables
of the hard subprocess now read

ŝ= xs+ 12 (1−x)(q
2+ q′

2
) ,

û= xu+ 12 (1−x)(q
2+ q′

2
) , (43)

in the Bjorken limit, so that x/ξ =−(ŝ− û)/(q2+ q′2). For
a dispersion relation at fixed t and fixed photon virtuali-
ties, ϑ plays the role of a constant parameter, and we can
use 1/ξ and x/ξ as respective energy variable of the over-
all process and the hard subprocess. In the Bjorken limit
the corresponding amplitudes have branch cuts in 1/ξ or
x/ξ from 1 to∞ and from −∞ to −1. The hard-scattering
kernel has the symmetry

Cq[σ]
(
−
x

ξ
, ϑ
)
=−σCq[σ]

(x
ξ
, ϑ
)

(44)

in analogy to (16). At leading order in αs it reads

Cq[σ](ω, ϑ)∝
1

1−ω− iε
−σ

1

1+ω− iε
,

ImCq[σ](ω, ϑ)∝ π
[
δ(ω−1)−σδ(ω+1)

]
, (45)

and at higher orders it has the same high-ω behavior as
discussed for DVCS after (22). In other words, the high-
energy behavior of the hard-scattering kernel for the vir-
tual Compton amplitude (40) remains unchanged if q′

2→
0. Similarly, the small-ξ behavior of Fq[σ](ξ, ϑ) is as dis-
cussed for DVCS after (23). One can thus derive dispersion
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relations for the invariant amplitude and for the hard-
scattering kernel as in Sect. 3.1, and one finds

ReFq[σ](ξ, ϑ) =
1

π

∫ ∞
1

dω ImCq[σ](ω, ϑ)

×

∫ 1
0

dx F q[σ](x, ϑξ)

[
1

ωξ−x
−σ

1

ωξ+x

]

(46)

and

ReFq[σ](ξ, ϑ) =
1

π

∫ ∞
1

dω ImCq[σ](ω, ϑ)

×

∫ 1
0

dx

{
F q[σ]

(
x, ϑ
x

ω

)

×

[
1

ωξ−x
−σ

1

ωξ+x

]

+

[
F q[σ](x, ϑξ0)−F

q[σ]
(
x, ϑ
x

ω

)]

×

[
1

ωξ0−x
−σ

1

ωξ0+x

]}
. (47)

These relations read exactly as their counterparts (27) and
(28) for DVCS, except that the second argument of F q[σ] is
now multiplied with ϑ and that Cq[σ] depends on ϑ as well.
The consistency of (46) and (47) is ensured if

∫ 1
−1
dx

[
F q(x, ϑξ)−F q

(
x, ϑ
x

ω

)] [ 1

ωξ−x
−σ

1

ωξ+x

]

(48)

is independent of ξ for all ω ≥ 1. Rescaling ξ′ = ϑξ and
ω′ = ω/ϑ, we readily see that this in ensured by the
ξ independence of the integral Iq[σ](ω) in (30), which we
have already established. Thus the dispersion relations for
doubly virtual Compton scattering give no new relations
for GPDs. Of course, one obtains dispersion representa-
tions for Hq[σ](ξ, ϑ) and Eq[σ](ξ, ϑ) as in (37) and (38),
with ϑ as an additional argument in Cq[σ] and with the
replacements Hq(x, x/ω)→ Hq(x, ϑx/ω), Eq(x, x/ω)→
Eq(x, ϑx/ω) andDq(x)(ω−x)−1→Dq(x)(ω/ϑ−x)−1.
Let us now consider the case q = q′, relevant for deep

inelastic scattering, where we have ξ = xB and ϑ= 0. The
representations (46) and (47) are then trivially consistent,
because the second argument of F q[σ] is zero everywhere.
In other words, the usual parton densities appearing in in-
clusive processes do not depend on an external kinematical
variable, unlike the generalized parton distributions ap-
pearing in exclusive processes.
In the following section we investigate the contribu-

tions from polarized quark distributions and from gluons
to DVCS and to meson production. The results we will ob-
tain can readily be generalized to the Compton amplitude
with two spacelike photons. We note that for the unpo-
larized quark distributions we have just considered, only
the amplitudes with σ = +1 appear in Compton scatter-
ing, whereas σ =−1 is relevant for the polarized quark and
gluon distributions.

4 Polarized and gluon distributions

Contributions from polarized quarks and from unpolarized
or polarized gluons to invariant amplitudes can be treated
in a similar manner as the case of unpolarized quarks in the
previous section. Particularities arise for each of the distri-
butions, which we will now discuss in turn.

4.1 Polarized quark distributions

Let us first investigate invariant amplitudes involving po-
larized quark distributions, which appear in both DVCS
and in the production of pseudoscalar mesons. The factor-
ization formula reads as in (15), where now F q = H̃q or

Ẽq. We define combinations H̃q[σ] and Ẽq[σ] of definite sig-
nature as in (18), and the relations (16) to (19) are again
valid. Note that, in contrast to their unpolarized coun-
terparts, H̃q[+] and Ẽq[+] correspond to negative charge
conjugation and H̃q[−] and Ẽq[−] to positive charge conju-
gation in the t-channel. The leading-order expression of the
hard-scattering kernel for DVCS and for meson production
is the same as in (22). At NLO one finds a large-ω behavior
Cq[σ](ω)∼ ω−1 up to logarithms in both cases. Note that
t-channel two-gluon exchange in the polarized sector does
not give rise to a power behavior as ω0. This is also explic-
itly seen in the NNLO kernels for inclusive deep inelastic
scattering [27].
For the polarized quark and antiquark densities we

assume that x∆q(x) and x∆q̄(x) vanish at x→ 0, as is
found in global fits and is required for the existence of

the moments
∫ 1
0 dx ∆q(x) and

∫ 1
0 dx ∆q̄(x). One should

then have a small-ξ behavior ξH̃q[σ]→ 0 for both positive
and negative signature, so that the once-subtracted dis-
persion relation (23) is valid. The argument proceeds as in
Sects. 3.1 and 3.2. According to (1) the xn−1 moment of
H̃q(x, ξ) has ξn−1 as highest power, so that the integral
I[σ](ω) in (30) is zero for both σ =+1 and σ =−1 in this
case. We therefore obtain the integral relation

∫ 1
−1
dx

[
H̃q(x, ξ)− H̃q

(
x,
x

ω

)] [ 1

ωξ−x
±

1

ωξ+x

]
= 0

(49)

and dispersion representations

Re H̃q[σ](ξ) =
1

π

∫ ∞
1

dω ImCq[σ](ω)

∫ 1
−1
dx H̃q(x, ξ)

×

[
1

ωξ−x
−σ

1

ωξ+x

]

=
1

π

∫ ∞
1

dω ImCq[σ](ω)

∫ 1
−1
dx H̃q

(
x,
x

ω

)

×

[
1

ωξ−x
−σ

1

ωξ+x

]
. (50)

We further find that H̃q[±](ξ)→ 0 for ξ→∞. As in the
unpolarized case, we could have obtained the second rep-
resentation in (50) from a dispersion relation without sub-
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traction in the case σ =−1. For σ =+1, the high-energy
behavior of the invariant amplitude does however require
one subtraction, even though the subtraction term is zero
when taking the subtraction point ξ0 →∞. An unsub-
tracted dispersion relation for positive signature would dif-
fer from (50), as remarked after (28).

For Ẽq[σ] the situation is more involved. According to
Table 2 this distribution admits more t-channel exchanges
than H̃q[σ], so that the small-ξ behavior of Ẽq[σ](ξ) and
H̃q[σ](ξ) may be different. In particular there is a known
spin-zero exchange contribution to Ẽq[−], which is due to
pion exchange and dominates the distributions for u and d
quarks at small t [28, 29]. It reads

Ẽuπ(x, ξ, t) =−Ẽ
d
π(x, ξ, t) =

c

m2π− t

1

|ξ|
φπ

(x
ξ

)
, (51)

where the constant c can be calculated in chiral perturba-
tion theory [22, 23] and the light-cone distribution ampli-
tude φπ(α) of the pion is an even function with support
for |α| < 1. Inserting this into the factorization formula
(15) one obtains a contribution going like ξ−1 to the in-
variant amplitudes Ẽu[−] and Ẽd[−]. This rises too strongly
at ξ→ 0 for the once-subtracted dispersion relations we
have used so far. At this point we notice that due to the
prefactor in its definition, the distribution Ẽq always con-
tributes to matrix elements as ξẼq, and correspondingly
it is ξẼq[σ] that appears in physical scattering amplitudes.
Note that because of its prefactor ξẼq[−](ξ) is even in ξ and
thus has positive instead of negative signature. The pion-
exchange term (51) gives a ξ independent contribution to
ξẼq[−](ξ), as it should be for spin-zero exchange. We can
thus write down a once-subtracted dispersion relation for
ξẼq[σ](ξ), assuming only that its small-ξ behavior is less
singular than ξ−2 for σ =−1 and less singular than ξ−1 for
σ =+1. The analog of (27) is now

Re ξẼq[σ](ξ) =
1

π

∫ ∞
1

dω ImCq[σ](ω)

×

∫ 1
−1
dx ξẼq(x, ξ)

[
1

ωξ−x
−σ

1

ωξ+x

]
,

(52)

and the analog of (28) reads

Re ξẼq[σ](ξ) =
1

π

∫ ∞
1

dω ImCq[σ](ω)

×

∫ 1
−1
dx

{
ξ0 Ẽ

q(x, ξ0)

[
1

ωξ0−x
−σ

1

ωξ0+x

]

+
x

ω
Ẽq
(
x,
x

ω

)[ 1

ωξ−x
+σ

1

ωξ+x

−
1

ωξ0−x
−σ

1

ωξ0+x

]}
, (53)

which can be rewritten as

Re ξẼq[σ](ξ) =
1

π

∫ ∞
1

dω ImCq[σ](ω)

×

∫ 1
−1
dx

{
ξẼq
(
x,
x

ω

) [ 1

ωξ−x
−σ

1

ωξ+x

]

+ ξ0

[
Ẽq(x, ξ0)− Ẽ

q
(
x,
x

ω

)]

×

[
1

ωξ0−x
−σ

1

ωξ0+x

]}
. (54)

With the methods of Sect. 3.2 one finds
∫ 1
−1
dx

[
Ẽq(x, ξ)− Ẽq

(
x,
x

ω

)] [ 1

ωξ−x
±

1

ωξ+x

]
= 0 ,

(55)

which ensures consistency of the two dispersion representa-
tions and allows us to omit the second line of (54). We thus
find that the analog of the representations (50) also holds
for Ẽq[σ]. In the case σ=+1, where spin-zero exchange does
not contribute, we could indeed have obtained this result
from a once-subtracted dispersion relation for Ẽq[σ].
Notice that the terms in the second line of (54) need not

give ξẼq[σ](ξ) at the unphysical point ξ→∞, in contrast to
the case discussed after (28). In fact ξẼq[−](ξ) is non-zero
at this point. Taylor expanding 1/(ωξ−x) and 1/(ωξ+x)
in (52) and using the polynomiality relation (1) one readily
finds

lim
ξ→∞

ξẼq[−](ξ) =
1

π

∫ ∞
1

dω ImCq[−](ω)
∞∑
n=1
odd

(
2

ω

)n
B̃qn,n−1 ,

lim
ξ→∞

ξẼq[+](ξ) = 0 . (56)

In Table 1 we see that the form factors B̃qn,n−1(t) are as-
sociated with pure spin-zero exchange. At small t they are
dominated by the pion-exchange term (51). Having sup-
port only in the ERBL region |x| < ξ, this term does not
contribute to the imaginary part of ξẼq[−](ξ), and one may
wonder how it can appear in the representation (54) for
the real part. The answer is that it induces a contribu-
tion proportional to δ(x) in Ẽq(x, x/ω). To see this we
observe that the double distribution generating (51) has
the form δ(β) eπ(α, t), where we have used the abbrevia-
tion eπ(α, t) = c(m

2
π− t)

−1φπ(α). For ω ≥ 1 one then has

Ẽuπ

(
x,
x

ω
, t
)
=

∫
dβ dα δ

(
x[1− αω ]−β

)
δ(β)eπ(α, t)

= δ(x)ω

∫ 1
−1
dα
eπ(α, t)

ω−α
. (57)

One may avoid this δ(x) contribution by taking the limit
ξ0→∞ in (53), which yields

Re ξẼq[σ](ξ) = lim
ξ0→∞

ξ0 Ẽ
q[σ](ξ0)+

1

π

∫ ∞
1

dω ImCq[σ](ω)

×

∫ 1
−1
dx
x

ω
Ẽq
(
x,
x

ω

)[ 1

ωξ−x
+σ

1

ωξ+x

]
,

(58)

with the subtraction term given in (56). The δ(x) contribu-
tion in Ẽq(x, x/ω) is now removed by the extra factor x and
instead appears explicitly in the subtraction term.
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4.2 Unpolarized gluon distributions

The contribution from unpolarized gluon distributions to
invariant amplitudes can be written as

Fg(ξ) =

∫ 1
−1
dx
1

ξ
Cg
(x
ξ

)F g(x, ξ)
x

, (59)

where F g(x, ξ) =Hg(x, ξ), Eg(x, ξ) is even in x and in ξ,
and the hard-scattering kernel Cg(ω) is odd in ω. The sin-
gularity introduced by the factor 1/x is spurious because
Cg(ω) ∼ ω at ω→ 0. For vector meson production, the
hard-scattering kernel reads

Cg(ω)∝
1

1−ω− iε
−

1

1+ω− iε
,

ImCg(ω)∝ π
[
δ(ω−1)− δ(ω+1)

]
(60)

at LO in αs, whereas for DVCS the kernel for gluon distri-
butions starts only at NLO. The high-ω behavior of Cg(ω)
at higher orders is the same as discussed for Cq[+](ω) after
(22). We assume a small-x behavior like g(x) ∼ x−α with
α< 2 for the unpolarized gluon density. The small-ξ behav-
ior Hg(ξ) ∼ ξ−α is then less singular than ξ−2 and hence
admits a once-subtracted dispersion relation.
The symmetry properties of Cg(ω) and of x−1F g(x, ξ)

are identical to those of Cq[+](ω) and F q[+](x, ξ) in the
unpolarized quark sector, so that the dispersion relations
for the process amplitude and for the hard-scattering ker-
nel read exactly as for unpolarized quark distributions in
(27) and (28) if one replaces Fq[+]→Fg, Cq[+]→ Cg and
F q[+]→ 2x−1F g. Consistency of these dispersion relations
is ensured if

Ig(ω) =

∫ 1
−1

dx

x

[
F g(x, ξ)−F g

(
x,
x

ω

)]

×

[
1

ωξ−x
−

1

ωξ+x

]
(61)

is independent of ξ. Using the symmetry properties of F g

we can replace 1/(ωξ−x)−1/(ωξ+x) by 2/(ωξ−x) under
the integral, with the principal value prescription taken to
regularize the singularity at x= 0. Repeating the proced-
ure of Sect. 3.2 we Taylor expand F g(x, x/ω) in its second
argument and obtain

Ig(ω) =
2

ω

∞∑
n=1

1

n!

×
( ∂
∂η

)n ∫ 1
−1

dx

x

(x
ω
− ξ
)n−1

F g(x, η)

∣∣∣∣
η=ξ

.

(62)

Since F g(x, η) is even in x, a non-zero integral is only ob-
tained from the odd powers of x in the expansion of (x/ω−
ξ)n−1, so that the factor x−1 in the integrand is canceled.
Using the polynomial property (2) one finally obtains

Ig(ω) = 4
∞∑
n=2
even

(
2

ω

)n
Cgn (63)

for F g = Hg, which is independent of ξ as required. Al-
ternatively, one may insert (5) and (6) into (61). For the
double distribution part ofHg this gives

∫ 1
−1

dx

x

[
Hgf (x, ξ)−H

g
f

(
x,
x

ω

)][ 1

ωξ−x
−

1

ωξ+x

]

= 2

∫ 1
−1
dx

∫
dβ dα βfg(β, α)

×
[
δ(x−αξ−β)− δ

(
x[1− αω ]−β

)] 1

x(ωξ−x)

=−
2

ω

∫
dβ dα

αfg(β, α)

αξ+β
, (64)

which is zero because αfg(β, α) is odd in both β and in α.
TheD term contribution toHg gives

Ig(ω) =
2

ω

∫ 1
−1
dα
Dg(α)

ω−α
, (65)

in agreement with (7) and (63). For F g = Eg one finds
analogous results with the opposite sign for Cg and Dg.
One thus obtains integral relations:

∫ 1
−1

dx

x

[
Hg(x, ξ)−Hg

(
x,
x

ω

)] [ 1

ωξ−x
−

1

ωξ+x

]

=−

∫ 1
−1

dx

x

[
Eg(x, ξ)−Eg

(
x,
x

ω

)] [ 1

ωξ−x
−

1

ωξ+x

]

=
2

ω

∫ 1
−1
dx
Dg(x)

ω−x
(66)

and dispersion representations

ReHg(ξ) =
1

π

∫ ∞
1

dω ImCg(ω)

×

∫ 1
−1
dx

{
1

x
Hg
(
x,
x

ω

) [ 1

ωξ−x
−

1

ωξ+x

]
+
2

ω

Dg(x)

ω−x

}
,

Re Eg(ξ) =
1

π

∫ ∞
1

dω ImCg(ω)

×

∫ 1
−1
dx

{
1

x
Eg
(
x,
x

ω

)[ 1

ωξ−x
−

1

ωξ+x

]
−
2

ω

Dg(x)

ω−x

}
.

(67)

Furthermore one finds

lim
ξ→∞

Hg(ξ) =− lim
ξ→∞

Eg(ξ)

=
1

π

∫ ∞
1

dω

ω
ImCg(ω)

∫ 1
−1
dx
2Dg(x)

ω−x
(68)

for the invariant amplitudes at ξ→∞. We remark in pass-
ing that (66) and (67) may be rewritten using

1

x

[
1

ωξ−x
−

1

ωξ+x

]
=
1

ωξ

[
1

ωξ−x
+

1

ωξ+x

]
. (69)
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4.3 Polarized gluon distributions

Let us now discuss the generalized gluon distributions in
the polarized sector, which appear in DVCS starting at
NLO in αs. As in the previous section we begin with the
factorization formula (59), where now F g(x, ξ) = H̃g(x, ξ),
Ẽg(x, ξ) is odd in x. The hard-scattering kernel Cg is even
in ω and vanishes like ω2 for ω→ 0. The invariant ampli-
tudes H̃g(ξ) and Ẽg(ξ) have negative signature. The NLO
calculation of Cg(ω) for DVCS gives a large-ω behavior
like ω−1 up to logarithms, and higher orders will have the
same power behavior as discussed in the first paragraph of
Sect. 4.1.
Assuming a small-x behavior x∆g(x)→ 0 of the po-

larized gluon density, which is required for the existence
of the moment

∫ 1
0
dx ∆g(x) and consistent with global

fits of parton densities, we expect that ξH̃g(ξ)→ 0 for
ξ→ 0. We then readily obtain dispersion relations as in
(27) and (28) with the replacements Fq[−]→ H̃g, Cq[−]→
Cg and F q[−]→ 2x−1H̃g. Their consistency requires the
ξ independence of

Ig(ω) =

∫ 1
−1

dx

x

[
H̃g(x, ξ)− H̃g

(
x,
x

ω

)]

×

[
1

ωξ−x
+

1

ωξ+x

]
, (70)

where the principal value prescription is to be taken at x=
0. As in Sect. 4.2 we can rewrite this as

Ig(ω) =
2

ω

∞∑
n=1

1

n!

( ∂
∂η

)n ∫ 1
−1

dx

x

(x
ω
− ξ
)n−1

H̃g(x, η)

∣∣∣∣
η=ξ

=
2

ω

∞∑
n=1

1

n!
(−ξ)n−1

( ∂
∂η

)n ∫ 1
−1

dx

x
H̃g(x, η)

∣∣∣∣
η=ξ

,

(71)

where in the second step we have expanded the factor
(x/ω− ξ)n−1 and used the polynomiality properties (2)
of H̃g. To proceed we need to know the dependence of∫
dx x−1H̃g(x, η) on η.

In [8] a double distribution representation for H̃g was
given, which has the same form as (6) forHgf . Inserting this
into (70) one obtains an expression as in (64), which is non-
zero because the corresponding double distribution is even
and not odd in β. Such a double distribution representation
for H̃g (as well as its analog for Ẽg) is however incomplete,
because for the xn−2 moment of the distributions it gives
a polynomial with highest power ξn−3 (with n being odd)
instead of ξn−1 as required in (2). To obtain a correct repre-
sentation, we can use the construction discussed in [30] for
the generalized quark distribution in the pion. This leads
to writing a double distribution representation for x−1H̃g

and x−1Ẽg, i.e.

H̃g(x, ξ, t) = x

∫
dβ dα δ(x−αξ−β) f̃g(β, α, t) ,

Ẽg(x, ξ, t) = x

∫
dβ dα δ(x−αξ−β) k̃g(β, α, t) ,

(72)

where f̃g and k̃g are even in α and β. We note that in
the forward limit t = 0 one has

∫
dα f̃g(x, α, 0) =∆g(x),

which is much less singular than the corresponding limit
x−1qπ(x) for the double distribution of quarks in the pion
considered in [30] and should thus be less problematic for
the purpose of model building.
Apart from giving the requiredmaximumpower of ξn−1

for the xn−2 moments of H̃g and Ẽg, the representation
(72) also has the important consequence that

∫ 1
−1

dx

x
H̃g(x, η) =

∫
dβ dα f̃g(β, α) (73)

is independent of η, so that according to (71)

Ig(ω) = 0 (74)

is independent of ξ, which we had to show. This is also seen
by direct insertion of (72) into (70), which leads to an ex-
pression of the form (33) we encountered for quark distribu-
tions. We thus finally obtain dispersion representations as

in (50) with the replacements H̃q[−]→ H̃g,Cq[−]→ Cg and
H̃q→ x−1H̃g, as well as the limit H̃g(ξ)→ 0 for ξ→∞.
For the invariant amplitude Ẽg we must take into ac-

count a possible spin-zero exchange in the t-channel (al-
though the exchange of an η or η′ in the flavor singlet sector
is most likely not of the same phenomenological impor-
tance as pion exchange in Ẽq). With the double distribu-
tion representation (72) one can proceed exactly as for the
case of quark distributions in Sect. 4.1. One thus obtains
analogs of the dispersion representations (50) with the re-

placements H̃q[−]→ Ẽg, Cq[−]→ Cg and H̃q→ x−1Ẽg, as
well as the results
∫ 1
−1

dx

x

[
Ẽg(x, ξ)− Ẽg

(
x,
x

ω

)] [ 1

ωξ−x
+

1

ωξ+x

]
= 0

(75)

and

lim
ξ→∞

ξẼg(ξ) =
1

π

∫ ∞
1

dω ImCg(ω)
∞∑
n=1
odd

(
2

ω

)n
2B̃gn,n−1 .

(76)

To avoid a δ(x) contribution in x−1Ẽg(x, x/ω) due to spin-
zero exchange one may use the analog of (58), which reads

Re ξẼg(ξ) = lim
ξ0→∞

ξ0 Ẽ
g(ξ0)+

1

π

∫ ∞
1

dω

ω
ImCg(ω)

×

∫ 1
−1
dx Ẽg

(
x,
x

ω

)[ 1

ωξ−x
−

1

ωξ+x

]
.

(77)

4.4 Helicity-flip distributions

We conclude this section with a few remarks on the
generalized parton distributions for quark or gluon he-
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licity flip, which have been introduced and discussed
in [31–33].
In the quark case these distributions are chiral-odd,

and to date there is no simple exclusive process known
where they appear. Reactions like γ∗p→ ρρp were pro-
posed in [34], but due to their three-particle final state
the discussion of dispersion relations would be much more
complicated. However, integral relations analogous to (49)
are valid for the quark distributions HqT , E

q
T , H̃

q
T and Ẽ

q
T

defined in [33]. As we saw in Sect. 3.2, their derivation only
requires the xn−1 moments of the distributions to be poly-
nomials in ξ with maximal power ξn−1. This is indeed the
case, as has been shown in [35].
Gluon helicity-flip distributions appear in DVCS start-

ing at orderαs, with the hard-scattering formula of the form

FgT (ξ) =

∫ 1
−1
dx
1

ξ
CgT

(x
ξ

)F gT (x, ξ)
x

(78)

for F gT =H
g
T , E

g
T , H̃

g
T , Ẽ

g
T as defined in [33]. Dispersion rep-

resentations for this case can be discussed in analogy to
the cases considered in the previous sections. To do this re-
quires analysis of the high-energy behavior (see the related
work [36] for the helicity-flip structure function F γ3 of the
photon) and of the polynomiality properties (in generaliza-
tion of the quark case treated in [35]). We shall not do this
here.

5 The model of Freund, McDermott
and Strikman

As an application of the dispersion relations discussed in
this work, we now investigate the model for GPDs pro-
posed by Freund, McDermott and Strikman in [6]. We fo-
cus on the quark singlet distribution and its generalized
counterpart,

Σ(x) =
∑
q

[
q(x)+ q̄(x)

]
,

H(x, ξ) =
∑
q

Hq[+](x, ξ) , (79)

where for ease of notation we have not explicitly indicated
that H(x, ξ) refers to the quark singlet. Here and in the
following we take t= 0, which does not affect the issue of
analyticity to be discussed. In our notation, the model in-
troduced in [6] reads

H(x, ξ) =

⎧⎪⎨
⎪⎩
Σ(x) for x≥ ξ ,

Σ(ξ)
x

ξ

[
1+
15

2
a(ξ)

(
1−
x2

ξ2

)]
for x < ξ ,

(80)

with a(ξ) chosen to satisfy the polynomiality condition
∫ 1
0

dx xH(x, ξ) =
∑
q

∫ 1
−1
dx xHq(x, ξ)

=

∫ 1
0

dx xΣ(x)+4ξ2C2 (81)

for the lowest non-trivial Mellin moment, where C2 =∑
q C
q
2 (t= 0) according to (1). One readily finds

Σ(ξ) a(ξ) =
1

ξ2

∫ ξ
0

dx xΣ(x)−
1

3
Σ(ξ)+4C2 . (82)

Clearly, higher Mellin moments of (80) are generally not
polynomials in ξ of the order required by (1). At small ξ,
one may expect that this does not have an important ef-
fect on the moments themselves, in the sense that a Taylor
expansion

∫ 1
0

dx xn−1H(x, ξ) =
∞∑
k=0
even

(2ξ)kAn,k (83)

of a given moment differs from a polynomial of order ξn

by terms vanishing like ξn+2 for ξ→ 0. It is however not
obvious that this only leads to small inconsistencies in scat-
tering amplitudes calculated with (80), given that these do
not have a simple expression in terms of Mellin moments
with integer index n.
We have seen that polynomiality of the Mellin moment

ensures the consistency of dispersion relations for the hard-
scattering kernel and for the process amplitude. Let us
check by howmuch the dispersion representations (27) and
(28) differ for the above model. We limit ourselves to the
lowest order in αs and take ImC

q[+](ω) = π
[
δ(ω− 1)−

δ(ω+1)
]
, omitting any global factors in the kernel. The

two dispersion representations then read

ReHdir(ξ) =

∫ 1
0

dx H(x, ξ)

[
1

ξ−x
−
1

ξ+x

]
,

ReHξ0(ξ) =

∫ 1
0

dx

{
H(x, x)

[
1

ξ−x
−
1

ξ+x

]

+

[
H(x, ξ0)−H(x, x)

][
1

ξ0−x
−

1

ξ0+x

]}
.

(84)

We note that at Born level ReHdir(ξ) calculated from (27)
coincides with the real part calculated directly from the
factorization formula (17). For a numerical study, we take

xΣ(x) = p1x
−p2(1−x)p3(1+p4x) (85)

for the quark singlet distribution, with p1 = 0.34, p2 = 0.25,
p3 = 4 and p4 = 25.4. This gives a reasonably good approx-
imation of the CTEQ6M distributions at scale µ= 2GeV.
With p3 taken as an integer, the integrals required for eval-
uating (82) and (84) are readily carried out. One finds
that ReHdir(ξ0) diverges for ξ0→∞ in this model, so that
one cannot use this point for the subtraction required in
ReHξ0 . We take instead the s-channel threshold ξ0 = 1,
where the model GPD has the simple formH(x, 1)∝ x(1−
x2). As an alternative choice we take the value ξ0 = 0.01 in
the small-ξ region. The comparison of the two representa-
tions in (84) for several values of ξ is given in Table 3. We
see that their discrepancy is severe and does not improve
with decreasing ξ. By construction, the two representa-
tions coincide of course for ξ = ξ0.
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Table 3. The convolution integrals ReHdir(ξ) and ReHξ0(ξ)
defined in (84), evaluated for ξ0 = 1 and ξ0 = 0.01. The values
are calculated with the GPD model specified by (80) and (82)
with C2 = 0. For better legibility, the values of the integrals
have been rounded to two significant digits in the first two rows
and to the next integer in the remaining ones

ξ ReHdir ReH1.0 ReH0.01
ReH1.0
ReHdir

ReH 0.01
ReHdir

10−4 12×104 4.4×104 4.4×104 0.37 0.37
10−3 6.5×103 2.3×103 2.5×103 0.35 0.39
10−2 318 74 318 0.23 1
0.1 26 9 253 0.37 10
0.3 16 11 255 0.70 16
0.5 10 7 251 0.76 26

The values in the table have been obtained by setting
C2 to zero in (82). One readily finds that this term gives
a contribution of 20C2 to both ReHdir(ξ) and ReHξ0(ξ).
Taking the value of C2 ≈ −0.8 estimated in the chiral
quark-soliton model [29] would not significantly change
the values for small ξ, and in any case cannot restore the
discrepancy between the two integrals in (84). We must
conclude that, even for small ξ, the model (80) violates
polynomiality and thus Lorentz invariance in a way which
leads to serious inconsistencies when using it to calculate
the real part of process amplitudes. To obtain consistent
results, one may use the ansatz (80) for |x| ≥ ξ to calculate
ImH(ξ) and to restore the real part from the dispersion
relation (25), with the subtraction constant left undeter-
mined by the model.

6 Summary

Lorentz invariance implies that the Mellin moments of gen-
eralized parton distributions are polynomials in the skew-
ness ξ with a maximal power depending on the quantum
numbers of the distribution. We have shown that this prop-
erty leads to integral relations∫ 1

−1
dx F (x, ξ, t)

[
1

ωξ−x
−σ

1

ωξ+x

]

=

∫ 1
−1
dx F

(
x,
x

ω
, t
)[ 1

ωξ−x
−σ

1

ωξ+x

]
+I(ω, t)

(86)

for σ=±1 andanyω≥ 1,whereF is one of the distributions

Hq, Eq, H̃q, Ẽq,
Hg

x
,
Eg

x
,
H̃g

x
,
Ẽg

x
, HqT , E

q
T , H̃

q
T , Ẽ

q
T .

(87)

In (86) Cauchy’s principal value prescription is to be used
at x=±ωξ and at x= 0. The only cases where I(ω, t) is
non-zero occur for unpolarized distributions and σ =+1,
where

±I(ω, t) = 2
∞∑
n=2
even

(
2

ω

)n
Cqn(t) = 2

∫ 1
−1
dx
Dq(x, t)

ω−x

for F =Hq, Eq,

±I(ω, t) = 4
∞∑
n=2
even

(
2

ω

)n
Cgn(t) =

2

ω

∫ 1
−1
dx
Dg(x, t)

ω−x

(88)

for F =Hg/x,Eg/x.
Here the + sign on the l.h.s. is to be taken for Hq and

Hg, and the − sign for Eq and Eg. To establish the re-
lations (86) in the polarized gluon sector, we needed that
the moments

∫
dx x−1H̃g(x, ξ, t) and

∫
dx x−1Ẽg(x, ξ, t)

are independent of ξ, and we had to correct the double dis-
tribution representation of H̃g and Ẽg used so far in the
literature.
For t ≤ 0 the real part of the leading invariant ampli-

tudes for DVCS or meson production can be obtained from
a dispersion relation of the hard-scattering kernel,

ReF(ξ, t) =
1

π

∫ ∞
1

dω ImC(ω)

×

∫ 1
−1
dx F (x, ξ, t)

[
1

ωξ−x
−σ

1

ωξ+x

]
,

(89)

or for the invariant amplitude itself,

ReF(ξ, t) =
1

π

∫ ∞
1

dω ImC(ω)

×

{∫ 1
−1
dx F

(
x,
x

ω
, t
) [ 1

ωξ−x
−σ

1

ωξ+x

]
+I(ω, t)

}
,

(90)

whereC =Cq[σ], Cg is the appropriate hard-scattering ker-
nel (for the quark transversity distributions no correspond-
ing process is known). Consistency of the two represen-
tations is ensured by (86). The contribution from I(ω, t)
in (90) is energy independent and can be identified with
F(ξ, t) in the limit ξ→∞, i.e. at the point 2ν = s−u= 0
below threshold. The corresponding terms given in (88) are
due to spin-zero exchange in the t-channel. Spin-zero ex-
change contributions in the parity-odd sector appear in Ẽq

and Ẽg. They do not give a non-zero I(ω, t) but can instead
generate a term proportional to δ(x) in F (x, x/ω, t). In
the alternative dispersion representations (58) and (77) for
Re ξEq[−](ξ, t) and Re ξEg(ξ, t) such a δ(x) term is avoided,
and the spin-zero exchange contribution appears directly
as a subtraction constant, with

∞∑
n=1
odd

(
2

ω

)n
B̃qn,n−1(t) or 2

∞∑
n=1
odd

(
2

ω

)n
B̃gn,n−1(t)

(91)

playing the same role as I(ω, t) in (90).
In Sect. 5 we have seen that the relation (86) can be

strongly violated in models of GPDs that do not respect
polynomiality, even for small ξ. In particular, we found
that the model proposed in [6] leads to serious conflicts
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with dispersion relations when used for calculating the real
part of scattering amplitudes.
The representation (90) has important consequences

for the information on GPDs that can be extracted from
DVCS and meson production. To leading approximation
in αs, the imaginary part of the amplitude is only sensi-
tive to the distributions at x= ξ, and the only additional
information contained in the real part is a constant associ-
ated with pure spin-zero exchange, given by (88) or (91) at
ω = 1. In [4, 5] this was referred to as a holographic prop-
erty. Beyond leading order the evaluation of both imagi-
nary and real parts of the amplitude involves however the
full DGLAP region |x| ≥ ξ. In addition, the real part de-
pends on the appropriate spin-zero term in (88) or (91) at
all ω ≥ 1. We remark that in [1] the possibility was dis-
cussed to reconstruct the subtraction terms in (88) from
the imaginary part of the DVCS amplitude combined with
the inclusive deep inelastic cross section.
Consider the comparison of a given model or parame-

terization of GPDs with data on DVCS or meson produc-
tion. In a leading-order analysis (which should of course
always be restricted to kinematics where the LO approx-
imation is adequate) it is sufficient to characterize each
GPD by its values at x= ξ, supplemented by a constant for
the spin-zero exchange contribution discussed above. On
one hand this can be a welcome simplification, and on the
other hand it indicates the limitations of an LO analysis:
when confronting data with a given GPD one is sensitive to
x 	= ξ (and to the details of the spin-zero exchange contri-
bution) only at NLO or higher accuracy.
Let us finally emphasize that the imaginary part of an

amplitude involves GPDs with skewness given by the value
of ξ in the measurement, whereas the dispersion repre-
sentation (90) of the real part involves all values of the
skewness from 0 to 1. For measurements in a limited energy
region, the extra information of the real part compared
with the imaginary one is thus not limited to the spin-zero
exchange terms.
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